Abstract

In this paper, the transmission mechanism of the spike information embedded in the low frequency fluctuation (LFF) dynamic in a cascaded laser system is numerically demonstrated. In the cascaded laser system, the LFF waveform is first generated by a drive laser with optical feedback and is then injected into a response laser. The range of crucial system parameters that can make the response laser generate the LFF dynamic is studied, and the effect of parameter mismatch on the transmission of LFF dynamics is explored through a method of symbolic time-series analysis and the index, such as the spike rate and the cross-correlation coefficient. The results show that the mismatch of the pump current has a more significant influence on the transmission of LFF waveforms than that of the internal physical parameter of the laser, such as the linewidth enhancement factor. Moreover, increasing the injection strength can enhance the robustness of LFF transmission. As spikes of the LFF dynamic generated by lasers with optical feedback is similar to the spike of neurons, the results of this paper can help understanding the information transporting and processing inside the photonic neurons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.