Abstract

We demonstrate numerically and experimentally that low- frequency fluctuations (LFF) in a laser diode subject to delayed optical feedback can be suppressed or stabilized by a second optical feedback with a short delay. The second feedback suppresses LFF by shifting antimodes far away from the external cavity modes in phase space, or by making them disappear, with the consequence that the crises that induce the power dropouts are no longer possible. Moreover, as the second feedback strength increases, the laser undergoes a bifurcation cascade with successive regions where it exhibits chaos or LFF and regions where it locks to a newly-born stable maximum gain mode. This all-optical stabilization technique is easier to implement from an experimental point of view than many existing methods since it does not require modification of any laser parameters or of the first optical feedback.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.