Abstract
In this paper, an efficient algorithm is presented by adopting the extrapolation technique to improve the accuracy of finite difference schemes for two-dimensional space-fractional diffusion equations with non-smooth solution. The popular fractional centered difference scheme is revisited and the stability and error estimation of numerical solution are given in maximum norm. Based on the analysis of leading singularity of exact solution for the underlying problem, the extrapolation technique and numerical correction method are exploited to enhance the accuracy and convergence rate of the computation. Two numerical examples are provided to validate the theoretical prediction and efficiency of the algorithm. It is shown that, by using the proposed algorithm, both accuracy and convergence rate of numerical solutions can be significantly improved and the second-order accuracy can even be recovered for the equations with large fractional orders.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have