Abstract

In this article, the computation of the linear growth rates and eigenfunctions of the viscous version of the Rayleigh-Taylor instability by numerically solving the corresponding eigenvalue problem in the case of one-dimensional (1D) and two-dimensional (2D) geometries is studied. The 1D version is first validated in the particular inviscid case to be compared to the previous literature. The most unstable mode, also known as the first mode, which has the maximal linear growth rate has been extensively studied in previous literature. Higher modes have smaller eigenvalues, but the corresponding eigenfunctions present a more complex structure that contains multipeak shapes. In the extension to the 2D geometry, the length of the domain limits the wave number of the eigenvectors computed. In the extension to the 2D geometry the length of the domain limits the wave number of the eigenvectors computed. The importance of extending the results to the two-dimensional case is twofold. First, it opens up the possibility of generalizing the computation to more complex geometries that could contain fixed or floating objects and, second, allows the computation of flow instabilities in nonzero basic flows that could come from the steady Navier-Stokes solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.