Abstract

This research aims to predict the grain size growth using numerical computation. The material to be investigated is stainless steel 316L (SS316L). The mathematical modeling is derived into two cases, namely with the absence of precipitate (free growth) and with the presence of growing precipitates. The numerical computation involves ordinary differential equation using Runge-Kutta 4th order written with FORTRAN language. The experimental verification is carried out by using quenching and deformation dilatometers. It can be concluded that modified kinetic constant (Mo*) should be defined differently for certain temperature range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.