Abstract

In this paper, an efficient and scalable approach for simulating inhomogeneous and non-linear elastic objects is introduced. Our numerical coarsening approach consists in optimizing non-conforming and matrix-valued shape functions to allow for predictive simulation of heterogeneous materials with non-linear constitutive laws even on coarse grids, thus saving orders of magnitude in computational time compared to traditional finite element computations. The set of local shape functions over coarse elements is carefully tailored in a preprocessing step to balance geometric continuity and local material stiffness. In particular, we do not impose continuity of our material-aware shape functions between neighboring elements to significantly reduce the fictitious numerical stiffness that conforming bases induce; however, we enforce crucial geometric and physical properties such as partition of unity and exact reproduction of representative fine displacements to eschew the use of discontinuous Galerkin methods. We demonstrate that we can simulate, with no parameter tuning, inhomogeneous and non-linear materials significantly better than previous approaches that traditionally try to homogenize the constitutive model instead.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.