Abstract

We investigate mortar multiscale numerical methods for coupled Stokes and Darcy flows with the Beavers---Joseph---Saffman interface condition. The domain is decomposed into a series of subdomains (coarse grid) of either Stokes or Darcy type. The subdomains are discretized by appropriate Stokes or Darcy finite elements. The solution is resolved locally (in each coarse element) on a fine scale, allowing for non-matching grids across subdomain interfaces. Coarse scale mortar finite elements are introduced on the interfaces to approximate the normal stress and impose weakly continuity of the normal velocity. Stability and a priori error estimates in terms of the fine subdomain scale $$h$$ h and the coarse mortar scale $$H$$ H are established for fairly general grid configurations, assuming that the mortar space satisfies a certain inf-sup condition. Several examples of such spaces in two and three dimensions are given. Numerical experiments are presented in confirmation of the theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.