Abstract

Radiative cooling uses space cold source to cool the object, and the radiative cooling film made by using this principle can be applied to automobiles effectively to save the refrigeration resources of automobiles. However, due to the limitation of economy, time, space and other factors, it is difficult to carry out comprehensive research on the actual film-forming cooling effect. Based on the principle of passive radiative cooling, a set of simulation models is developed, which is applied to the selection of infrared radiation materials for automotive radiative cooling film and the study of the influence of environmental factors on the radiative cooling effect. SiO2 was finally selected as infrared radiation material. At the same time, the theoretical cooling temperature of the radiative cooling film applied to the passenger compartment of automobiles can reach 6.8°C under the conditions of 35°C ambient temperature, 0.99 atmospheric transmittance and 10 heat transfer coefficient, using SiO2 as infrared radiation material and PE as dispersion substrate. At the same time, the cooling effect of the radiative cooling film is positively correlated with the ambient temperature, atmospheric transmittance to some extent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call