Abstract

ABSTRACT Interstitial dumbbell-mediated diffusion can affect segregation and precipitation properties of solutes in alloys under irradiated conditions. Accurate computation of transport coefficients for dumbbell-mediated diffusion thus becomes essential for modelling solute segregation under irradiation. In this work, we extend the Green's function approach, a general numerical approach, to compute accurate transport coefficients for interstitial dumbbell-mediated mechanisms in the dilute limit for arbitrary crystalline systems with non-truncated correlations in atomic diffusion. We also present results of tracer correlation factors, solute drag ratios and partial diffusion coefficient ratios in iron and nickel-based alloys computed with our approach, compare our results with existing results in the literature, and discuss some aspects of correlated solute-dumbbell motion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call