Abstract

ABSTRACT With regard to an inherent understanding of electrical conductivity exhibited by monolithic metals and alloys system and metal matrix composite system under alternating current field, a long-standing unresolved issue, an analytical model is developed following classical free electron theory along with a typical conceptualisation of ‘effective relaxation time’ that combines conventional relaxation time (in view of collision of free electrons with lattice defects) and the time between successive cyclic reversals of electric field (the inverse of frequency). Two prime phenomena (electron scattering and polarisation at particle–matrix interface) are further conceived for metal matrix composite system containing particles. The developed model is found to closely follow (% deviation << 10) the available experimental result in the literature on A.C. electrical conductivity of 6063Al alloy and 6063Al–TiO2 composite systems. The model further ascertains certain system-specific parameters; such as, relaxation time under A.C. field, effective scattering factor and effective relaxation time aid from interface polarisation to specify the system behaviour under alternating current field. Accordingly, the model adequately explains the declining trend of A.C. electrical conductivity with increasing frequency in monolithic alloy system and an enhancement of A.C. electrical conductivity in metal matrix composite system in the presence of particles together with a non-declining trend even on increasing frequency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call