Abstract

Time-dependent Hartree-Fock simulations for a linear triatomic molecule (CO(2)) interacting with a short IR (1.63 eV) three-cycle pulse reveal that the carrier-envelope shape and phase are the essential field parameters determining the bound state electron dynamics during and after the laser-molecule interaction. Analysis of the induced dipole oscillation reveals that the envelope shape (Gaussian or trapezoidal) controls the excited state population distribution. Varying the carrier envelope phase for each of the two pulse envelope shapes considerably changes the excited state populations. Increasing the electric field amplitude alters the relative populations of the excited states, generally exciting higher states. A windowed Fourier transform analysis of the dipole evolution during the laser pulse reveals the dynamics of state excitation and in particular state coupling as the laser intensity increases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.