Abstract
We study the numerical solution of semilinear parabolic PDEs on unbounded spatial domains ? in ?2 whose solutions blow up in finite time. Of particular interest are the cases where ?=?2 or ? is a sectorial domain in ?2. We derive the nonlinear absorbing boundary conditions for corresponding, suitably chosen computational domains and then employ a simple adaptive time-stepping scheme to compute the solution of the resulting system of semilinear ODEs. The theoretical results are illustrated by a broad range of numerical examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.