Abstract

Dense granular materials are universal in nature and some common examples of this kind of materials in our daily lives are sand, rice, sugar etc. Research in this area is motivated by numerous applications encountered in industrial processes, such as hopper discharge, chute flow, moving beds, sandpipe flow, etc. and also in geophysics for the description and prediction of natural hazards like landslide and rock avalanches. Here, a continuum description of these granular flows is appropriate. Granular materials in liquid-like state show strong non-Newtonian behavior, which is typically described by phenomenological constitutive laws with local rheology. Very often, fluidization and flows of granular materials are localized in thin shear bands, whereas the granular material remains in solid-like state outside these bands. In this paper we establish a benchmark problem for granular materials, namely as Couette flow which is a very common example for granular materials in industrial application. We formulate the rheology for the continuum approach in the framework of the regularized version of a Bingham fluid and use advanced numerical methods regarding discretization as well as solution aspects, so that we can provide mesh independent results with two different software packages, Featflow and Openfoam, which can be used for validation and evaluation of the different methods and approaches.The authors thank the German Research Foundation DFG for funding under the grants TU 102/44-1 and SCHW 1168/6-1 within the pilot for transnational cooperation of the Dutch Technology Foundation STW and the DFG. This work was also supported by DAAD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.