Abstract
Numerical attoclock is a theoretical model of attosecond angular streaking driven by a very short, nearly a single oscillation, circularly polarized laser pulse. The reading of such an attoclock is readily obtained from a numerical solution of the time-dependent Schr\"odinger equation as well as a semi-classical trajectory simulation. By making comparison of the two approaches, we highlight the essential physics behind the attoclock measurements. In addition, we analyze the predictions of the Keldysh-Rutherford model of the attoclock [Phys. Rev. Lett. 121, 123201 (2018)]. In molecular hydrogen, we highlight a strong dependence of the width of the attoclock angular peak on the molecular orientation and attribute it to the two-center electron interference. This effect is further exemplified in the weakly bound neon dimer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.