Abstract

To evaluate the effect of a converging injector geometry, volumetric flow rate and gallant content on the pressure drop, the velocity and viscosity fields, the governing equations of the steady, incompressible, isothermal, laminar flow of a Power-Law, shear-thinning gel propellant in a converging injector were formulated, discretized and solved. A SIMPLEC numerical algorithm was applied for the solution of the flow field. The results indicate that the mean apparent viscosity decreases with increasing the volumetric flow rate and increasing the gallant content results in an increase in the viscosity. The results indicate also that the convergence angle can produce additional decrease in the mean apparent viscosity of the fluid. The mean apparent viscosity decreases significantly with increasing the convergence angle of the injector, and its value is limited by the Newtonian viscosity η∞. The effect of the convergence angle on the mean apparent viscosity is more significant than the effect of the volumetric flow rate and the gallant content on the mean apparent viscosity. Additional decreasing the viscosity results in increasing the pressure drop with increasing convergence angle. It is important to injector design that the viscosity decreasing and the pressure drop increasing are took into account together.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.