Abstract

For propulsion systems using gel fuels, reducing the gel fuel viscosity is essential for achieving better atomization and combustion. In this paper, we investigate the flow and heat transfer in a water-gel with a temperature and shear dependent viscosity. We consider several different channels, mimicking the transport of gelled fuels in propulsion systems, and we also look at corrugation, which is a way of enhancing fluid mixing and thus improving the heat transfer characteristics. The rheological parameters in the constitutive model of the gel are fitted with experimental data. The influence of different corrugation profiles, corrugation configuration parameters and the Reynolds number on the mean apparent viscosity and the pressure drop are investigated. It was found that the flow recirculation formed in the valley of the corrugations enhances the heat transfer and thus the temperature of the main flow. We also noticed an increase in the pressure drop due to the stronger viscous dissipation. Furthermore, it was observed that the sinusoidal corrugation can achieve lower viscosity with a lower pressure drop compared with triangular and trapezoidal corrugations. A shorter wavelength and a deeper wave amplitude of the corrugation seemed to be better for reducing the gel fuel viscosity, while we must consider the adverse consequence of increased pressure drop. A larger Reynolds number was helpful for both lowering the pressure drop and for reducing the viscosity. In addition, compared with a smooth straight pipe, a Y-shape corrugated channel with a constant inlet velocity reduced the mean apparent viscosity by 70.8%, and this value increased to 72.6% by further applying a pulsed inlet velocity, which can greatly enhance the gel fuel atomization and thus improve the combustion efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call