Abstract
We apply Wigner-transform techniques to the analysis of difference methods for Schrodinger-type equations in the case of a small Planck constant. In this way we are able to obtain sharp conditions on the spatial-temporal grid which guarantee convergence for average values of observables as the Planck constant tends to zero. The theory developed in this paper is not based on local and global error estimates and does not depend on whether caustics develop or not. Numerical test examples are presented to help interpret the theory.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have