Abstract

Scalar hyperbolic integro-differential equations arise as models for e.g. radiating or self-gravitating fluid flow. We present finite volume schemes on unstructured grids applied to the Cauchy problem for such equations. For a rather general class of integral operators we show convergence of the approximate solutions to a possibly discontinuous entropy solution of the problem. For a specific model problem in radiative hydrodynamics we introduce a convergent fully discrete finite volume scheme. Under the assumption of sufficiently fast spatial decay of the entropy solution we can even establish the convergence rate h1/4|ln(h)| where h denotes the grid parameter. The convergence proofs rely on appropriate variants of the classical Kruzhkov method for local balance laws together with a truncation technique to cope with the nonlocal character of the integral operator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.