Abstract
The problem of recovering a degenerate operator kernel in a hyperbolic integro-differential operator equation is studied. Existence, uniqueness and stability for the solution are proved. A conditional convergence of a sequence of solutions corresponding to degenerate kernels to a solution corresponding to a non-degenerate kernel is shown. Such results are applied to determine space- and time-dependent relaxation kernels in a multi-dimensional viscoelastic wave equation with given boundary observations of traction type on the assumption that the kernels to be determined are representable as a finite or infinite sum of products of known space-dependent and unknown time-dependent functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.