Abstract
In this paper, we obtain stochastic operational matrix of block pulse functions on interval [0,1) to solve stochastic Volterra–Fredholm integral equations. By using block pulse functions and their stochastic operational matrix of integration, the stochastic Volterra–Fredholm integral equation can be reduced to a linear lower triangular system which can be directly solved by forward substitution. We prove that the rate of convergence is O(h). Furthermore, the results show that the approximate solutions have a good degree of accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.