Abstract

This work uses the collocation approximation method to solve a specific type of backward stochastic Volterra integral equations (BSVIEs). Using Newton’s method, BSVIEs can be solved using block pulse functions and the corresponding stochastic operational matrix of integration. We present examples to illustrate the estimate analysis and to demonstrate the convergence of the two approximating sequences separately. To measure their accuracy, we compare the solutions with values of exact and approximative solutions at a few selected locations using a specified absolute error. We also propose an efficient method for solving a triangular linear algebraic problem using a single integral equation. To confirm the effectiveness of our method, we conduct numerical experiments with issues from real-world applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.