Abstract
Purpose The purpose of this paper is to study the influence of pivot stiffness on the dynamic characteristics of tilting-pad journal bearings (TPJBs) and the stability of the bearing-rotor system. Design/methodology/approach A theoretical numerical model is established, and the influences of pivot stiffness on TPJBs and a bearing-rotor system are analyzed. Then, two kinds of pivot structures with different stiffness are designed and the vibration characteristics are tested on the vertical rotor bearing test bench. Findings The pivot stiffness has an obvious effect on the dynamic characteristics of the TPJBs and the stability of the bearing-rotor system. As a result of appropriate pivot stiffness, the critical speed and the vibration amplification factor can be reduced, the logarithmic decay rate and the stability of the rotor system can be effectively increased. While the journal whirl orbit is smoother and the rubbing is obviously reduced when the bearings have flexible pivots. Originality/value The influence of pivot stiffness on TPJBs and a vertical rotor-bearing system is studied by theoretical and experimental methods.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have