Abstract

The present paper aims to examine experimentally and numerically the effect of equivalence ratio and injection pressure on combustion in a can combustor. The results show the combustor temperature rises with an increase in the overall equivalence ratio. With an increase in the injection pressure at a constant equivalence ratio, the flame is extended to the combustor downstream. The IRZ (Inner Recirculation Zone) region in the primary zone has high turbulence kinetic energy increasing the fuel droplet evaporation rate. This zone provides a region of appropriate mixing of fuel-air, leading to a zone of flame-holding. In the intermediate zone, the mixture fraction near liner walls reaches its stoichiometric value, and a flame is formed near the liner walls. With an increase in the equivalence ratio or injection pressure at constant equivalence ratio, the incomplete combustion species is reduced and the pattern factor and combustion efficiency are improved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call