Abstract
With continuous of the wars and the rise of the killings, taking place in the world it was necessary for us as engineers and researchers that we step even slightest to reduction in killings, and the current research is an attempt in this direction. Composite ballistic body armor materials have become a better body armor protection when contrasted with conventional steel body armor as far as its diminishment in weight and a perfection in ballistic resistance. The current research attempted to design and manufacture a novel body armor from cheap and available materials. In this study, alternative materials were proposed to develop an armor consisting of modified rubber and ebonite, as well as pieces of ceramic from alumina as hexagons shape, Kevlar and Carbon woven, and modern technologies shear thickening fluids. The armor was numerically evaluated using (ANSYS) commercial software using different bullet velocities ranging from (740 to 940) m/s and different numbers of carbon and Kevlar woven soaking shear thickening fluids to reach the best arrangement of layers with the best performance and compare them in the experimental data. The numerical results showed the best performance for plate armor consisting of 23-layers, which were then experimentally tested using a weapon type (AK-47) rifle with bullet 7.62*39 mm. The experimental test showed no complete penetration, with a back deformation of 7.5 mm. When the shock of the double bullet into the plate at the same location showed no complete penetration with a back deformation of 11.3 mm. The experimental data confirmed well with the numerical results and the body armor exhibited superior protective performance and was compatible with standard NIJ Standard-0101.03.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.