Abstract
By means of both experimental and finite element methods, we simulated three-dimensional unsteady flows through coronory bypass anastomosis. The host artery includes a stenosis shape located at two different distances of grafting. The inflow rates are issued from in vivo measurements in patients who had undergone coronary bypass surgery a few days before. We provide a comparison between experimental and numerical velocity profiles coupled with the numerical analysis of spatial and temporal wall shear stress evolution. The interaction between the graft and coronary flows has been demonstrated. The phase inflow difference can partly be responsible for specific flow phenomena: jet deflection towards a preferential wall or feedback phenomenon that causes the flapping of the post-stenotic jet during the cardiac cycle. In conclusion, we showed the sensitivity of these typical flows to distance of grafting, inflows waveforms but also to their phase difference.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have