Abstract

A mathematical model is established to describe the thermal debinding process of polymeric binder from a powder injection molding compact. The model takes into account of the thermal degradation of liquid polymer into liquid volatile fragment, the evaporation of liquid volatile fragment, the capillary driven liquid phase transport, the binary diffusion in solution, the convection and diffusion of gas phases, and the heat transfer in a porous medium. The proposed model is solved numerically based on a finite volume method and validated with experimental data. Based on the numerical results, the binder removal, the pressure buildup, the binder distribution, the mass transfers, and the removal mechanisms during thermal debinding are studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.