Abstract

Mass transfers and phase changes of two-component binder in a porous green compact during thermal debinding process are modeled. The evaporation of low molecular weight (LMW) component and volatile fragments, the thermal degradation of high molecular weight (HMW) component, the capillary driven and pressure driven liquid phase transports, the binary diffusion in solutions, the convection and diffusion of gas phases, and the heat transfer in a porous medium are captured in the model. The model is validated with experimental data. The simulated results show that mass transfers during the early stage of thermal debinding are mainly due to capillary driven and pressure driven liquid transports. During the final stage of thermal debinding, both convective liquid and gas transports are important in binder removal. The developed model provides physical understanding of binder removal mechanisms that are essential for process optimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.