Abstract

PurposeLaser powder bed fusion (LPBF) in-situ alloying is a recently developed technology that provides a facile approach to optimizing the microstructural and compositional characteristics of the components for high performance goals. However, the complex mass and heat transfer behavior of the molten pool results in an inhomogeneous composition distribution within the samples fabricated by LPBF in-situ alloying. The study aims to investigate the heat and mass transfer behavior of an in-situ alloyed molten pool by developing a three-dimensional transient thermal-flow model that couples the metallurgical behavior of the alloy, thereby revealing the formation mechanism of composition inhomogeneity.Design/methodology/approachA multispecies multiphase computational fluid dynamic model was developed with thermodynamic factors derived from the phase diagram of the selected alloy system. The characteristics of the Al/Cu powder bed in-situ alloying process were investigated as a benchmark. The metallurgical behaviors including powder melting, thermal-flow, element transfer and solidification were investigated.FindingsThe Peclet number indicates that the mass transfer in the molten pool is dominated by convection. The large variation in material properties and temperature results in the presence of partially melted Cu-powder and pre-solidified particles in the molten pool, which further hinder the convection mixing. The study of simulation and experiment indicates that optimizing the laser energy input is beneficial for element homogenization. The effective time and driving force of the convection stirring can be improved by increasing the volume energy density.Originality/valueThis study provides an in-depth understanding of the formation mechanism of composition inhomogeneity in alloy fabricated by LPBF in-situ alloying.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call