Abstract

ABSTRACT Stirling technology has applications in both renewable energy and waste heat recovery systems. The applicability of Stirling engines in these fields depends on the development of more efficient external combustion machines using renewable energy sources or waste heat. In this study, a new drive mechanism is proposed for the low cost, low weight, low volume and high-efficiency Stirling engines. The effects of the new drive mechanism on the performance parameters of the alpha-type kinematic Stirling engine are investigated, experimentally and theoretically. The mathematical model is validated by using the experimental results. The torque values for different piston forces are presented and compared with that of the conventional slider-crank mechanism. The results show that the torque value of the engine using the new drive mechanism increases by up to 3.66 times compared with that of the conventional slider-crank mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.