Abstract

Due to the development of aviation hydraulic systems towards high pressure and high flow, the frequency range of pressure pulsation becomes wider, and the amplitude of pulsation increases. This puts higher requirements on the attenuation characteristics of the pressure pulsation attenuator. To reduce the damage caused by pressure pulsation to the pipeline, a Helmholtz-type pulsation attenuator (HTPA) is designed, which works through the Helmholtz resonant chamber. The theoretical model of HTPA is established by the method of lumped parameter method and distribution parametric method. The insertion loss is adopted to evaluate its attenuation characteristics. The internal pressure dynamic characteristics and attenuation effect of the HTPA are analyzed by simulation and experimentation. The results show that the pulsation attenuation rate δ was 40% after the installation of the attenuator. In the frequency range of 0–1000 Hz, the maximum insertion loss is 19 dB, which verifies the validity and correctness of the theoretical model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.