Abstract
Purpose This study aims to present the experimental and computational performance analysis in compact plate heat exchanger (PHE) using graphene oxide nanofluids at different concentrations and flow rate. Design/methodology/approach Field emission scanning electron microscope and X-ray diffraction were used to characterize graphene oxide nanoparticles. The nanofluid samples were prepared by varying volume concentration. Zeta potential test was done to check stability of samples. The thermophysical properties of samples have been experimentally measured. The experimental setup of PHE with 60° chevron angle has also been developed. The numerical analysis is done using computational fluid dynamics (CFD) model having similar geometry as of the actual plate. Distilled water at fixed temperature and flow rate is used in hot side tank. Nanofluid at fixed temperature with varying concentration and flow rate is used in cold side tank as coolant. Findings The numerical and experimental results were compared and found that both results were in good agreement. The results showed ∼13% improvement in thermal conductivity, ∼14% heat transfer rate (HTR), ∼9% in effectiveness and ∼10% in overall heat transfer coefficient at cost of pressure drop and pumping power using nanofluid. Exergy loss also decreased using nanofluid at optimum concentration of 1 Vol.%. Originality/value The CFD model can be significant to analyze temperature, pressure and flow distribution in heat exchanger which is impossible otherwise. This study gives ease to predict PHE performance with high accuracy without performing the experiment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Numerical Methods for Heat & Fluid Flow
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.