Abstract

In this paper we analyse numerically and experimentally the quench behavior of Cu-stabilized second-generation high temperature superconducting (2G HTS) wires at self-field and in adiabatic conditions. The electric field profiles along the superconductor after applying an energy pulse to the conductor have been obtained together with the parameters characterizing the quench: minimum quench energy (MQE) and the normal zone propagation velocity (NZPV). The analysis has been performed at different temperatures, T, between 72 K and 77 K, and at different applied currents, I/I <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">c</sub> (T) <; 1, I <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">c</sub> being the critical current. Our analysis shows that the numerical results obtained by finite element method (FEM) are closer to the experimental MQE values when the contribution of the thermal mass of the heater is taken into account.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.