Abstract

A modeling approach is presented for assessing microstructure evolution in the solid state after arc welding armor steel plates. Reliability of the proposed approach is appraised using the case study methodology; predictions of microstructure and hardness for as-welded samples of a specific alloy are compared with results of in-depth quantitative microstructure characterization and microhardness measurements. The experimental work was carried out on MIL A46100 armor steel plates welded with AWS E11018M covered electrodes. The modeling approach is implemented in a modular algorithm consisting of diverse tasks, each one of them based on methods described in full in literature. The original contribution of the present work consists the proposed hypothesis that at each point of the weldment the microstructure established at peak temperature during thermal cycles can be (i) assumed to be the same which corresponds to the local equilibrium condition as dictated by thermodynamics, when peak temperature is above AC 1 temperature, or (ii) assumed to be the one corresponding to non-equilibrium martensite decomposition during annealing, when peak temperature is below AC 1 temperature. The most important applications of the algorithm presented are debated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.