Abstract
In deep hole machining operations with twist drills, whirling vibrations lead to a significant increase in hole diameter deviation and circularity error. In this article, a nonlinear physical model with special consideration of the contact area between the margins of the tool and the workpiece is developed to predict the hole circularity of drilling operations. Numerical simulations are used to study the geometry of the drilling tool to propose a new margin design. In an experimental study, it is shown that the newly developed margin geometry for twist drill tools decreases radial vibrations and leads to a significant improvement in hole diameter deviations and hole circularities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Advances in Industrial and Manufacturing Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.