Abstract

AbstractThe effective mitigation of the liquefaction hazard requires an improved understanding of the consequences of liquefaction in terms of ground shaking, permanent displacement, and building performance. In this paper, results from centrifuge experiments of a shallow-founded structure on liquefiable sand are used to evaluate the predictive capabilities of a state-of-the-art numerical tool. Solid-fluid, fully-coupled 3D nonlinear numerical simulations were performed using the PDMY02 soil model implemented in a software modeling domain. The numerical model captured excess pore pressures and accelerations well in the free-field, but largely underestimated volumetric settlements due to loss of water during shaking. This was associated with the drastic increase in soil hydraulic conductivity when approaching liquefaction, which was not taken into account numerically, as well as the underestimation of soil volumetric compressibility. The contribution of volumetric strains to total building settlement was, ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call