Abstract
Abstract. More than 10 high-speed railway routes with top speeds of 300 km h−1 are expected to be operational from Beijing by the year 2020. However, the safety of these routes is affected by the occurrence of land subsidence. This paper focuses on the Beijing–Tianjin Intercity High-Speed Railway (BTR), the first high-speed railway in China, to analyze the operational safety of high-speed railway routes by analyzing both regional land subsidence and local differential subsidence caused by groundwater drawing. The Beijing construction stratum is mainly composed of cohesive soil, and the BTR has a maximum accumulative subsidence of > 800 mm and a maximum subsidence rate of > 80 mm a−1. In this paper, finite-element software ABAQUS is used to analyze groundwater drawdown and land subsidence caused by local water drawing, and its effect on the bearing capacity of railway bridge pile foundations and the orbit concrete supporting course. The analysis provides a technical basis for developing prevention and control engineering measures against land subsidence so as to guarantee the safe operation of these high-speed railway routes.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the International Association of Hydrological Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.