Abstract
SummaryThis paper investigated the fire behavior of steel‐concrete composite beams (SCB) and partially encased steel‐concrete composite beams (PEB) through numerical analysis. The numerical models established by the software ABAQUS were verified against experimental results. Parametric studies were performed to study the influences of load ratio, strength of concrete and steel, width of concrete slab, size of steel beam, fire protection layer, and degree of shear connection on the fire behavior of SCB and PEB. The analysis results show that the deformation stages of SCB and PEB under fire both go through four stages: elastic, elastic–plastic, plastic small deformation, and plastic large deformation. The web of SCB experiences a tension–compression–tension process under fire, and the bottom flange of PEB may even change from tension to compression at a lower load ratio. The failure mode of PEB, whether the concrete is crushed, depends on the load ratio. When SCB fails, the concrete is crushed and only the bottom flange of the steel beam yields. Under various parameters, the fire resistance of SCB is about 22 min, while the fire resistance of PEB is 82–93 min under a load of 0.4. When the load ratio increases from 0.2 to 0.6, the fire resistance of SCB decreases by 8 min, while that of PEB decreases by 110 min. To meet class I fire resistance rating under a normal service load ratio of 0.4, additional measures for PEB are still required, and at least 15 mm of fire protection layer is required for the steel beam of SCB. Finally, considering the temperature internal fore, a coefficient related to the fire time was introduced to modify the formula of ultimate flexural capacity of SCB and PEB, which showed good accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Structural Design of Tall and Special Buildings
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.