Abstract

Under-reamed piles are piles with enlarged bases, which may be single bulb or multi bulbs. Such piles are suitable for resisting considerable soil movement of filed up ground, soft clay, and loose sand and have the advantages of increasing the soil strength and decreasing the displacement. In the present study, the finite element method was used to analyse the performance of a single pile with under-reamed bulbs of different shapes, that is, single cone, double cone, and half and full sphere, embedded in homogeneous, poorly graded sandy soil. The model of under-reamed pile was made of reinforced concrete and the bulb located at the middle of the embedded length of the pile. The dynamic load applied on the piles is a vertical harmonic load produced from the vibration of machine fixed on the pile cap and the results analysed using PLAXIS 3D software. The Moher-Coulomb model was used to simulate the behaviour of the soil and the linear elastic model was used for simulating the behaviour of the pile material. The load-settlement curve was obtained from the analysis of different patterns of the under-reamed pile, and the results showed a reduction in the settlement by 1,670% when using a single cone. The single cone gives the best results in comparison with other shapes of under-reamed bulbs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call