Abstract

In this work a fixed mesh finite element approach is presented to solve thermally coupled flow problems including moving interfaces between immiscible fluids and phase-change effects. The weak form of the full incompressible Navier-Stokes equations is obtained using a generalized streamline operator (GSO) technique that enables the use of equal order interpolation of the primitive variables of the problem: velocity, pressure and temperature. The interfaces are defined with a mesh of marker points whose motion is obtained applying a Lagrangian scheme. Moreover, a temperature-based formulation is considered to describe the phase-change phenomena. The proposed methodology is used in the analysis of a filling of a step mould and a gravity-driven flow of an aluminium alloy in an obstructed vertical channel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call