Abstract
Blockage accidents are critical scenarios in the design and safety analysis of lead-bismuth cooled fast reactor (LFR) core. Traditional analysis of blockage accidents in LFR focuses on localized, fine-scale computational fluid dynamics (CFD) simulations of single or three assemblies, but the analysis of the whole core scale impact caused by blockage accidents is insufficient. Therefore, this paper uses CorTAF-LBE, a three-dimensional thermal-hydraulic analysis code developed by XJTU-NuTHeL, to analyze the impact of blockage accidents on the whole core of the LFR. The reliability of the code in calculating thermal-hydraulic parameters under blockage accidents was validated based on the KALLA-THEADES and KALLA-IWF experiments. Taking the MYRRHA-FASTEF core as the object, simulations and analyses are conducted for various blockage scenarios with different lengths and positions. The results indicate that blockage accidents lead to an enlarged coolant temperature gradient at the core outlet. Lengthening the blockage results in an elevation of the peak temperature in the cladding. Under 2.06 % blockage at the center of the assembly, blockage in the middle of the heating segment poses the greatest threat to cladding integrity, with the maximum temperature reaching 1336.9K, an increase of 635.4K compared to normal operating conditions. Under 4.59 % blockage at the edge of the assembly, the maximum cladding temperature reaches 1381.8K, and the heat transfer rate of the inter-wrapper flow (IWF) adjacent to the blockage area is 24.2 % higher than under normal operation. Additionally, severe degradation in heat transfer downstream was not observed in several simulated blockage scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.