Abstract

As a critical technological approach, multistage fracturing is frequently used to boost gas recovery in compact hydrocarbon reservoirs. Determining an ideal cluster distance that effectively integrates pre-existing natural fractures in the deposit creates a fracture network conducive to gas movement. Fracturing fluid leak-off also impacts water resources. In our study, we use a versatile finite element–discrete element method that improves the auto-refinement of the grid and the detection of multiple fracture movements to model staged fracturing in naturally fractured reservoirs. This computational model illustrates the interaction between hydraulic fractures and pre-existing fractures and employs the nonlinear Carter leak-off criterion to portray fluid leakage and the impacts of hydromechanical coupling during multistage fracturing. Numerical results show that sequential fracturing exhibits the maximum length in unfractured and naturally fractured models, and the leak-off volume of parallel fracturing is the smallest. Our study proposes an innovative technique for identifying and optimizing the spacing of fracturing clusters in unconventional reservoirs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call