Abstract

The collision behavior and ice formation of a water droplet are affected by its falling process. In this paper, the two-phase flow of air and a water droplet at a specific temperature is adopted to investigate the processes of falling and freezing of a single water droplet. To track the air–water droplet interface and the temperature distribution, the level-set method and the non-isothermal flow coupling method are used, and the freezing model is added into the water’s control equations. The numerical results indicated that with the initial temperature at 283.15 K and the spherical shape, the water droplet changes to the shape of a straw hat at 293.15 K and a drum at 293.15 K but an oval face in freezing temperatures at 0.10 s. There is an obvious drop in the downward velocity when the water droplet falls in mild temperatures at 0.09 s. The downward velocity of the water droplet in air at sub-zero temperatures has a continuous increase during the time span from 0 s to 0.10 s. There is also an obvious difference when the water droplet impinges on the solid bottom. Lastly, the freezing of sessile water droplets attached on the horizontal surface is helpful to reveal the unique phase change process of water droplets in cold air.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call