Abstract

In processes such as foam injection molding, due to the strong dependence of melt viscosity on gas content, the overall viscosity of a polymer melt will increase once the air phase (i.e., the bubbles) is developed in the polymer matrix. The diffusion of gas from the polymer melt into growing bubbles results in a gas concentration-dependent viscosity profile around each bubble, such that the viscosity at the bubble-melt interface can be significantly larger than further from the bubble. This effect of the viscosity profile on bubble growth and deformation is numerically investigated. We show that the viscosity variation slows the bubble growth rate at the early stages; this is more noticeable in low cell density foams. The effect of the viscosity profile on bubble deformation in a mold-filling simulation is also investigated. We show that the viscosity profile increases the resistance of bubbles to deformation, compared to bubbles that are assumed to be in a melt of uniform viscosity. This difference becomes more pronounced at larger capillary numbers.In processes such as foam injection molding, due to the strong dependence of melt viscosity on gas content, the overall viscosity of a polymer melt will increase once the air phase (i.e., the bubbles) is developed in the polymer matrix. The diffusion of gas from the polymer melt into growing bubbles results in a gas concentration-dependent viscosity profile around each bubble, such that the viscosity at the bubble-melt interface can be significantly larger than further from the bubble. This effect of the viscosity profile on bubble growth and deformation is numerically investigated. We show that the viscosity variation slows the bubble growth rate at the early stages; this is more noticeable in low cell density foams. The effect of the viscosity profile on bubble deformation in a mold-filling simulation is also investigated. We show that the viscosity profile increases the resistance of bubbles to deformation, compared to bubbles that are assumed to be in a melt of uniform viscosity. This difference becom...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.