Abstract

Reduction zone of iron ore reactor have been simulated. This is a part of counter current gas-solid reactor for producing sponge iron. The aim of this research is to study the effect of reduction gas composition and temperature on quality and product capacity of sponge iron products through mathematical modeling arrangement and simulation. Simultaneous mass and energy balances along the reactor lead to a set of ordinary differential equation which includes kinetic equations. Kinetic equations of reduction of hematite to iron metal, methane reforming, and water gas shift reaction are taken into account in the model. Hydrogen and carbon monoxide are used as reduction gas. The equations were solved by finite element method. Simulation result shows an increase in H2 composition while an attenuation of CO will produce higher metallization degree. Metallization degree is also increased with an increase in gas inlet temperature. Reduction gas temperature over than 973oC (1246 K) is not recommended because the formation of sticky iron will be initiated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.