Abstract

A one-dimensional finite volume discretization method is proposed and is implemented as a computer program for the modeling of a family of stirling type Pulse Tube Cryocoolers (PTC). The set of unsteady, one-dimensional, viscous compressible flow equations are written in a general form such that all, porous and non-porous, sections of the PTC can be modeled with these governing equations. In present work, temperature dependency of thermo-physical properties are taken into account as well as the heat transfer between the working fluid and the solid parts, and heat conductions of the gas and solid. The simulation tool can be used to model both the inertance tube type and the orifice type cryocoolers equipped with regenerators made up of different matrix constructions. The PTC might have an arbitrary orientation with respect to the gravitational field. By using the computer program, an orifice type and an inertance tube type pulse tube cryocooler are simulated. Diameter of the orifice and length of the inertance tube are optimized in order to maximize the coefficient of performance. Furthermore, the cooling power of the two types is obtained as a function of the cooling temperature. The behavior of thermodynamic parameters of the inertance tube PTC is investigated. Mean cyclic values of the parameters are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.