Abstract

Two-dimensional (2D) radiation hydrodynamics simulations have been performed to investigate the generation and the refraction influence in the plasma medium of a fully coherent x-ray laser at 13.9 nm by the double-target configuration. The local energy deposition of the main laser pulse generates a blast wave near the critical density surface and the density dip structure is gradually formed behind the blast wave. The size of the density dip structure is about 10 μm after 50 ps of the main pulse. The three-dimension (3D) ray-trace calculation using the result of the 2D simulation shows the x-rays pass through the density dip with less refraction. The size and the position of the density dip area are similar to the light source of the fully coherent x-ray laser.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call