Abstract

The particle distribution on the ceramic filter surface has great effect on filtration performance. The numerical simulation method is used to analyze the particle distribution near the filter surface under different operation conditions. The gas/solid two‐phase flow field in the ceramic filter vessel was simulated using the Eulerian two‐fluid model provided by FLUENT code. The user‐defined function was loaded with the FLUTNT solver to define the interaction between the particle and the gas near the porous ceramic candle filter. The distribution of the filter cake along the filter length and around the filter circumference was analyzed. The simulation results agree well with experimental data. The simulation model can be used to predict the particle distribution and provide theory direction for the engineering application of porous ceramic filters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.