Abstract

In this study, developing laminar forced convection of Al2O3/water nanofluid flow inside a trapezoidal microchannel has been investigated. The numerical simulation is conducted using two different methods which consider the effect of non-uniform nanoparticle distribution: Buongiorno’s Two-component nonhomogeneous model, and Eulerian-Lagrangian two-phase method. The results are compared to experimental data and also single-phase and dispersion methods. It is shown that the Eulerian-Lagrangian method predicts microchannel Nusselt number more accurately than Buongiorno’s model. Particle distribution is not uniform in the cross section of microchannel, and with increasing Reynolds number this nonuniformity is more. Moreover, the effect of different forces on heat transfer is discussed. It is found that the influence of Saffman’s lift force is negligible while Brownian and thermophoretic forces affect the heat transfer coefficient slightly. Furthermore, it is shown that the use of experimental correlation for nanoparticle Nusselt number makes the numerical results more accurate, so it is important to take into account the scale effects and use the suitable correlations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.