Abstract

An electrothermal flow induced chaotic mixing in microfluidic systems is studied analytically and numerically. The flow is induced due to the Coulombic and dielectric forces arising from the variation of the dielectric properties with respect to the temperature in the presence of an electric field. The numerical model is validated using an analytical solution derived for basic flow patterns in a simplified geometry. The computational model has been used to illustrate the mixing in microcavity and T-sensor constructs. The simulations predict the chaotic nature of the mixing process, where the material interface evolution shows exponential growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.