Abstract

In this paper, results on double diffusive mixed convection in a lid-driven cavity are discussed in detail with a focus on the effect of interaction between fluid inertial force and thermosolutal buoyancy forces on convective heat and mass transfer. The governing equations for the mathematical model of the problem consist of vorticity transport equation, velocity Poisson equations, energy equation and solutal concentration equation. Numerical solution for the field variables are obtained by solving the governing equations using Galerkin’s weighted residual finite element method. The interaction effects on convective heat and mass transfer are analyzed by simultaneously varying the characteristic parameters, 0.1<Ri<5, 100<Re<1000, and buoyancy ratio (N), −10<N<10. In the presence of strong thermosolutal buoyancy forces, the increase in fluid inertial force does not make significant change in convective heat and mass transfer when the thermal buoyancy force is smaller than the fluid inertial force. The fluid inertial force enhances the heat and mass transfer only when the thermal buoyancy force is either of the same magnitude or greater than that of the fluid inertial force. The presence of aiding solutal buoyancy force enhances convective heat transfer only when Ri becomes greater than unity but at higher buoyancy ratios, the rate of increase in heat transfer decreases for Re=400 and increases for Re=800. No significant change in heat transfer is observed due to aiding solutal buoyancy force for Ri≤1 irrespective of the Reynolds number.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.